Topic 3 -
Conditional Probability

Montes Hall problem

- See Numberphile video and 21 video from website first.
- Suppose you always start by picking door \#1.
Then Montey Hall reveals a goat behind either door 2 or door 3. Then asks if you want to switch or sty on door 1. What de you do?

Table of possibilities

door	door I	door 3	Stay w/ door 1 strategy	Switch from dor 1 Strategy
car	goat	goat	WIN	LOSE
goat	car	goat	LOSE	WIN
gout	goat	car	LOSE	WIN

1
always starting with door 1 as first choice
:---:
staying
you
win
$1 / 3$
the time
:---:
you
win
$2 / 3$
of
the
time

You should always switch!

Ex: Suppose we roll two 6-sided dice, a green die and a red die. Suppose the green die stops rolling and lands un a 3, but the red die keeps rolling.
What's the probability that the sum of the dice is 8 ?

So, the probability is $1 / 6$.

Let's make a formula for this without having to shrink the sample space S and also a method that generalizes even to spaces where the outcomes are not equally likely.
Let $E=$ the event in 5 where the sum of the dice is 8.
Let $F=S^{\prime}=\begin{aligned} & \text { the event in } S \\ & \text { where the green } \\ & \text { die is } 3 .\end{aligned}$
we want to know the "conditional probability" of the event E occuring given that F has "already occured."

Defil Let (S, Ω, P) be a probability space. Let E and F be two events.
Suppose $P(F)>0$.
Define the conditional probability that E occurs given that F occured to be

$$
\begin{aligned}
& \text { occured to be } \\
& P(E \mid F)=\frac{P(E \cap F)}{P(F)}
\end{aligned}
$$

these probabilities are calculated in S

Ex: (HW 3 \#3 modified) Suppose you coll two 8 -sided dice. You can't see the outcome, but your friend can. They tell you that the sum of the dice is divisible by 5 . What is the probability that both dice have landed on 5 ?

$$
\begin{aligned}
& S=\{(a, b) \mid a, b=1,2, \ldots, 8\} \\
& |S|=8^{2}=64 \\
& F=\{(a, b) \mid a+b \text { is divisible by } 5\} \\
& E=\{(5,5)\} \quad P(E \cap F \mid
\end{aligned}
$$

$$
\begin{aligned}
& E=\{(5,5)\} \\
& \text { Want: } P(E \mid F)=\frac{P(E \cap F)}{P(F)}
\end{aligned}
$$

We have

$$
\begin{aligned}
& F=\left\{\begin{aligned}
\left\{\begin{array}{l}
(1,4),(2,3),(2,8),(3,2),(3,7), \\
(4,1),(4,6),(5,5),(6,4), \\
(7,3),(7,8),(8,2),(8,7)\}
\end{array}\right. \\
E \cap F=\{(5,5)\}
\end{aligned}\right. \\
& \begin{aligned}
P(E \mid F)=\frac{P(E \cap F)}{P(F)} & =\frac{(1 / 64)}{(13 / 64)} \\
& =1 / 13 \\
& \approx 0.7692 \ldots \\
& \approx 7.7 \%
\end{aligned}
\end{aligned}
$$

Theorem: Let (S, Ω, P) be a probability space.
(1) Let A and B be events and $P(A)>0$. Then

$$
P(A \cap B)=P(A) \cdot P(B \mid A)
$$

(2) Let $A_{1}, A_{2}, \ldots, A_{n}$ be events with $P\left(A_{1} \cap A_{2} \cap \ldots \cap A_{n}\right)>0$.

Then,

$$
\begin{aligned}
& P\left(A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right)= \\
& P\left(A_{1}\right) \cdot P\left(A_{2} \mid A_{1}\right) \cdot P\left(A_{3} \mid A_{1} \cap A_{2}\right) \cdot \\
& \quad \cdot P\left(A_{4} \mid A_{1} \cap A_{2} \cap A_{3}\right) \cdots \\
& \quad \cdots P\left(A_{n} \mid A_{1} \cap A_{2} \cap \cdots \cap A_{n-1}\right)
\end{aligned}
$$

(3) (Law of total probability)

Suppose $S=E_{1} \cup E_{2} \cup \cdots \cup E_{n}$ where each $E_{i} \neq \phi$, and $E_{i} \cap E_{j}=\phi$ if $i \neq j$,

$E_{n} |$| S is |
| :--- |
| broken |
| into |
| disjoint |
| dents | and $P\left(E_{i}\right) \neq 0$ for each i.

Then for event E we have

$$
\begin{aligned}
& P(E)=P\left(E \mid E_{1}\right) \cdot P\left(E_{1}\right)+\left[P\left(E \cap E_{1}\right)\right. \\
&+P\left(E \mid E_{2}\right) \cdot P\left(E_{2}\right)+\begin{array}{c}
+ \\
\\
\\
\\
\\
\\
\end{array}+P\left(E \mid E_{n}\right) \cdot P\left(E_{n}\right) \\
& \vdots \\
& \vdots \\
& P\left(E_{\cap}\right)
\end{aligned}
$$

proof:
(1) This follows from the definition

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}
$$

(2) Let's prove this by induction.

The base case is $n=2$, which is

$$
\begin{array}{r}
\text { base case is } n=2, P\left(A_{2} \mid A_{1}\right) \\
P\left(A_{1} \cap A_{2}\right)=P\left(A_{1}\right) \cdot P\left(A_{2} \mid A_{1}\right)=\frac{P\left(A_{1}\right)}{P(}
\end{array}
$$

Which is true since $P\left(A_{2} \mid A_{1}\right)=\frac{P\left(A_{1} \cap A_{2}\right)}{P\left(A_{1}\right)}$.
Suppose the statement is true for $n=k$ sets.

$$
\begin{aligned}
& \text { Then, } \\
& P\left(A_{1} \cap A_{2} \cap \cdots \cap A_{k+1}\right)=P\left(\left(A_{1} \cap A_{2} \cap \ldots \cap A_{k}\right) \cap A_{k+1}\right) \\
& \begin{array}{l}
n=2 \\
\text { bare } \\
\text { case }
\end{array}=P\left(A_{1} \cap A_{2} \cap \ldots \cap A_{k}\right) \cdot P\left(A_{k+1} \mid A_{1} \cap A_{2} \cap \ldots \cap A_{k}\right) \\
& =P\left(A_{1}\right) \cdot P\left(A_{2} \backslash A_{1}\right) \cdot P\left(A_{3} \mid A_{1} \cap A_{2}\right) \ldots \\
& \quad \begin{array}{l}
n=k \\
\text { inductive } \\
\begin{array}{l}
\text { care }
\end{array}
\end{array} \quad \cdot P\left(A_{k} \backslash A_{1} \cap A_{2} \cap \ldots \cap A_{k-1}\right) \cdot \\
& \quad P\left(A_{k+1} \mid A_{1} \cap A_{2} \cap \ldots \cap A_{k}\right)
\end{aligned}
$$

So, the statement is true for $n=k+1$ given
that is true for $n=k$. Thus, by induction, the statement is tree for all $n \geqslant 2$.

Note: Since

$$
A_{1} \cap A_{2} \cap \cdots \cap A_{n} \subseteq A_{1}, A_{1} \cap A_{2}, A_{1} \cap A_{2} \cap A_{3}, \ldots
$$

and $P\left(A_{1} \cap A_{2} \cap \ldots \cap A_{n}\right)>0$ this ensures

$$
\begin{aligned}
& \text { and } P\left(A_{1} \cap A_{2} \cap \ldots \cap A_{n}\right)>0 \text { this ensures } \\
& \text { that } P\left(A_{1}\right)>0, P\left(A_{1} \cap A_{2}\right)>0 \text {, } P\left(A_{1} \cap A_{2} \cap A_{3}\right)>0
\end{aligned}
$$ etc and thus all the conditional probabilites above are well-defined.

(3) We have

$$
\begin{aligned}
& \text { (3) We } \\
& P(E)=P\left(\left(E \cap E_{1}\right) \cup\left(E \cap E_{2}\right) \cup \ldots \cup\left(E \cap E_{n}\right)\right) \\
& \quad=\sum_{i=1}^{n} P\left(E \cap E_{i}\right) \\
& \begin{array}{l}
\text { axiom } \\
\text { of pribabininy } \\
\text { spaces }
\end{array}=\sum_{i=1}^{n} P\left(E \mid E_{i}\right) \cdot P\left(E_{i}\right)
\end{aligned}
$$

from (1) of this theorem

Ex: Suppose there are three boxes. In box 1, there are two 4 -sided dice. In $b \circ \times 2$, there are two 6 -sided dice. In box 3 , there are two 8 -sided dice.
Suppose you rand only pick a box (each box is equally likely to be chosen), then you take the dice out of that box arid roll them.
What is the probability that the sum of the dice is 8?
Solution:

Picked box
1
:---
$\frac{\text { dice is } 8}{\{(4,4)\}}$
:---
of sum 8
when box
is picked
$1 / 16$

$\left.\begin{array}{l}\begin{array}{|c}\begin{array}{c}\text { picked box } \\ 2\end{array} \\ \hline \begin{array}{l}\text { picked } \\ \text { box } 3 \\ (4,4),(5,3), \\ (6,2)\}\end{array}\end{array} \rightarrow \begin{array}{l}\begin{array}{l}\text { Sum of dice } \\ \text { is 8 }\end{array} \\ (2,6),(3,5), \\ \frac{\text { sum of dice is } 8}{\{(1,7),(2,6),(3,5),} \\ (4,4),(5,3), \\ (6,2),(7,1)\}\end{array}\end{array} \rightarrow \begin{array}{l}\begin{array}{l}\text { probability } \\ \text { of sum 8 } \\ \text { when box } \\ \text { 2 is picked }\end{array} \\ \text { probability } \\ \text { of sum } 8 \\ \text { when box } \\ 3 \text { is picked } \\ 7 / 64\end{array}\right]$
$P($ sum of dice is 8$)$

$$
\begin{aligned}
& =P\left(\left.\begin{array}{l}
\text { sum of } \\
\text { dice is } 8
\end{array} \right\rvert\, \text { box } 1 \text { picked }\right) \cdot P\binom{\text { box } 1}{\text { picked }} \\
& +P\left(\left.\begin{array}{l}
\text { qum of } \\
\text { dice is } 8
\end{array} \right\rvert\, \text { box } 2 \text { picked }\right) \cdot P\binom{\text { box } 2}{\text { picked }} \\
& +P\left(\left.\begin{array}{l}
\text { sum of } \\
\text { dice is } 8
\end{array} \right\rvert\, \text { box } 3 \text { picked }\right) \cdot P\binom{\text { box } 3}{\text { picked }}
\end{aligned}
$$

$$
\begin{aligned}
& =(1 / 16)\left(\frac{1}{3}\right)+(5 / 36)\left(\frac{1}{3}\right)+(7 / 64)\left(\frac{1}{3}\right) \\
& =\frac{11,456}{110,592} \approx 0.1036 \ldots \approx 10,36 \%
\end{aligned}
$$

Ex: (Monty Hall)
Let's redo the probability of the switch strategy for Montey Hall (start with door 1 and sustchafter Monty reveals another door).

$$
\begin{aligned}
& P(\text { Win car }) \\
& =P\left(\begin{array}{c|c}
\text { win } & \text { car behind } \\
\text { car } & \text { door 1 }
\end{array}\right) \cdot P\binom{\text { car behind }}{\text { door 1 }} \\
& +P\left(\begin{array}{c|c}
\text { win } & \text { car behind } \\
\text { car } & \text { door 2 }
\end{array}\right) \cdot P\binom{\text { car behind }}{\text { door 2 }} \\
& +P\left(\begin{array}{c|c}
\text { win } & \text { car behind } \\
\text { car } & \text { door 3 }
\end{array}\right) \cdot P\binom{\text { car behind }}{\text { door 3 }}
\end{aligned}
$$

$$
\begin{aligned}
& =(0)\left(\frac{1}{3}\right)+(1)\left(\frac{1}{3}\right)+(1)\left(\frac{1}{3}\right) \\
& =2 / 3
\end{aligned}
$$

Sometimes $P(E \mid F)$ is not equal to $P(E)$ and
sometimes it is.
Suppose $P(E \mid F)=P(E)$.
Then, $\quad \frac{P(E \cap F)}{P(F)}=P(E)$.
So, $P(E \cap F)=P(E) \cdot P(F)$
Def: We say that two events E and F are independent if $P(E \cap F)=P(E) \cdot P(F)$
otherwise we say they are dependent.

Note: Suppose $P(E)>0$ and $P(F)>0$
E and F are independent is equivalent to

$$
P(E \cap F)=P(E) \cdot P(F)
$$

is equivalent to

$$
\frac{P(E \cap F)}{P(E)}=P(F) \text { and } \frac{P(E \cap F)}{P(F)}=P(E)
$$

is equivalent to

$$
P(F \mid E)=P(F) \text { and } P(E \mid F)=P(E)
$$

Ex: Suppose you roll two 6-sided die, one green and one red.
Let E be the event that the green die is 1.
Let F be the event that the red die is 3 .
Are these events independent? ?

$$
\begin{aligned}
& S=\left\{(9, r) \left\lvert\, \begin{array}{l}
g=1,2,3,4,5,6 \\
r=1,2,3,4,5,6
\end{array}\right.\right\} \sim|5|=36 \\
& E=\{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)\} \\
& F=\{(1,3),(2,3),(3,3),(4,3),(5,3),(6,3)\} \\
& E \cap F=\{(1,3)\} \\
& P(E \cap F)=\frac{1}{36} \\
& P(E) \cdot P(F)=\frac{6}{36} \cdot \frac{6}{36}=\frac{1}{6} \cdot \frac{1}{6}=\frac{1}{36}
\end{aligned}
$$

So, $P(E \cap F)=P(E) \cdot P(F)$
Thus, E and F are independent.
Ex: Suppose you roll two 6-sided die, one green and one red.
Let E be the event that the sum of the dice is 6 .
Let F be the event that the red die equals 4 .
Are E and F independent?

$$
\begin{aligned}
& S=\{(9, r) \mid g, r=1,2,3,4,5,6\} \leftharpoondown|s|=36 \\
& E=\{(1,5),(2,4),(3,3),(4,2),(5,1)\} \\
& F=\{(1,4),(2,4),(3,4),(4,4),(5,4),(6,4)\} \\
& E \cap F=\{(2,4)\}
\end{aligned}
$$

$$
\begin{aligned}
& P(E \cap F)=1 / 36 \approx 0.0278 \ldots \\
& P(E) \cdot P(F)=(5 / 36)(6 / 36)=\frac{5}{216} \approx 0.0231 \ldots
\end{aligned}
$$

Thus, $P(E \cap F) \neq P(E) \cdot P(F)$.
So, E and F are not independent.

Def: (General def of independence) In a probability space (S, Ω, P) the events $E_{1}, E_{2}, \ldots, E_{n}$ are said to be independent if for every $2 \leq k \leq n$ we have that

$$
P\left(E_{i_{1}} \cap E_{i_{2}} \cap \cdots \cap E_{i_{k}}\right)=P\left(E_{i_{1}}\right) \cdot P\left(E_{i_{2}}\right) \cdots P\left(E_{i_{k}}\right)
$$

Whenever $\mid \leqslant \bar{l}_{1}<i_{2}<\cdots<i_{k} \leqslant n$

Ex: E_{1}, E_{2}, E_{3} are independent if all of the following are true:

$$
\begin{aligned}
& P\left(E_{1} \cap E_{2}\right)=P\left(E_{1}\right) \cdot P\left(E_{2}\right) \\
& P\left(E_{1} \cap E_{3}\right)=P\left(E_{1}\right) \cdot P\left(E_{3}\right) \\
& P\left(E_{2} \cap E_{3}\right)=P\left(E_{2}\right) \cdot P\left(E_{3}\right) \\
& P\left(E_{1} \cap E_{2} \cap E_{3}\right)=P\left(E_{1}\right) \cdot P\left(E_{2}\right) \cdot P\left(E_{3}\right)
\end{aligned}
$$

Theorem: Let S be a sample space of a repeatable experiment. Let A and B be events where $A \cap B=\phi \quad[$ they don't overlap. This is called disjoint events] Suppose further that each time we repeat the experiment S, the experiment is independent of the previous times we did experiment S. Suppose we keep repeating S until either A or B occurs and then we stop. Then the probability that A occurs before B is given by $\frac{P(A)}{P(A)+P(B)}$
proof: Let E be the event that A occurs before B. Let A_{1}, B_{1}, N_{1} be the events that A occurs on the first experiment, B occurs on the first experiment, or neither occurs on the first experiment. Then,

$$
\begin{aligned}
& \text { first experiment. } \\
& P(E)=P\left(E \mid A_{1}\right) \cdot P\left(A_{1}\right)+P\left(E \mid B_{1}\right) \cdot P\left(B_{1}\right)+P\left(E \mid N_{1}\right) \cdot P\left(N_{1}\right) \\
&=1 \cdot P\left(A_{1}\right)+0 \cdot P\left(B_{1}\right)+P\left(E \mid N_{1}\right) \cdot \underbrace{\left[1-P\left(A_{1}\right)-P\left(B_{1}\right)\right]}_{\begin{array}{l}
\text { because the } \\
\text { sample space is } \\
\text { the dis ont } \\
\text { union of } A_{1}, B_{1} \\
\text { and } N_{1}
\end{array}} \\
&=P\left(A_{1}\right)+P(E) \cdot\left[1-P\left(A_{1}\right)-P\left(B_{1}\right)\right]
\end{aligned}
$$

Since the outcomes of successive experiments are all independent of each other. When the secund experiment begins the whole procedure reobubilistically stents over again. Therefore if in the lost experiment neither A

$$
P(E)-P(E)\left[1-P\left(A_{1}\right)-P\left(B_{1}\right)\right]=P\left(A_{1}\right)
$$

nor B occurs, the probability

$$
\begin{aligned}
& \text { hus, } \\
& \begin{aligned}
P(E) & =\frac{P\left(A_{1}\right)}{P\left(A_{1}\right)+P\left(B_{1}\right)} \\
& =\frac{P(A)}{P(A)+P(B)}
\end{aligned}
\end{aligned}
$$ of E before doing the list experiment and after doing the lost experiment is the same

Ex: Suppose we roll two 6-sided die over and over. Let A be the event that the sum of the dice is 5, Let B be the event that the sum of the dice is 7. We keep rolling the dice until either A os B happens and then we stop. Whats the probability that A occurs before B, ic that we roll sum of 5 before we roll sum of $7 ?_{0}$

Ex:
roll $1-\square \square \cdot \square \leftarrow$ sum $=3$
roll 2- $\square \square$ sum =2

$$
\text { roll } 3-\because \because \operatorname{sum}=5
$$

Sum is 5 uccured he fore sum is 7

$$
\begin{aligned}
& S=\{(a, b) \mid a, b=1,2,3,4,5,6\} \in|5|=36 \\
& A=\{(1,4),(2,3),(3,2),(4,1)\} \\
& B=\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\} \\
& P(A)=4 / 36 \\
& P(B)=6 / 36
\end{aligned}
$$

Probability sum is S occurs before

Sum is 7 is $[$ ie A before $B]$

$$
\frac{P(A)}{P(A)+P(B)}=\frac{4 / 36}{4 / 36+6 / 36}=\frac{4}{10}=\frac{2}{5}=40 \%
$$

probability sum is 7 occurs before Sum is 5 uccurs is [ie B before A]

$$
\frac{P(B)}{P(B)+P(A)}=\frac{6 / 36}{6 / 36+4 / 36}=\frac{6}{10}=60 \%
$$

